
EENG 499
Water Rocket Telemetry

Brandon Kelly
Advised by Dr. Daniel Cutshall

August 2021-May 2023

1 Introduction

This project is concerned with the creation of a water rocket telemetry system
to be used in conjunction with launches at Milligan University. The telemetry
system has two primary purposes:
1. Log the altitude and related data.
2. Deploy a recovery method.
This project seeks to fulfill this role through the use of a microcontroller. Pri-
mary concerns are weight, ruggedness, reliability, and safety.

2 Terminology

In order to clarify some of the language used the following definitions/ abbre-
viations are given:
ESP32: A type of microcontroller used to control both the receiver and trans-
mitter. This may also be called microcontroller or µc in this documentation.

3 Background & Problem Statement

The central problem my research seeks to solve is the inability to measure quan-
titative data from the water rockets used by Milligan University for its summer
camps and other engineering activities. The status quo consists of an angle
finder which is slow, imprecise, and requires a human to track the rocket. In
order to solve this problem, I was asked by Dr. Greg Harrell and Dr. Daniel
Cutshall to design, build, and test a system that could log this data and survive
multiple launches. This system must be able to log altitude, store it, and then
initiate a recovery sequence, in order to protect both the rocket and the user.

1

4 Electrical Engineering

4.1 Overview and Goals

There were several specific goals in mind for the design of the electrical systems.
A primary concern was power efficiency as batteries tend to be heavy and thus
by minimizing power consumption we can minimize weight. A modular and
relatively off-the-shelf layout was also desired as it allowed for both rapid pro-
totyping and future upgrades. Finally, a user-friendly design focus was utilized
for each ”client-facing” system. This means that control and logging features
are made to be intuitive.

4.2 Architecture

The telemetry system utilizes a point-to-point communication model. This
means that the boards communicate directly with each other in a ”peer-to-
peer” mode. This topology was chosen in order to reduce complexity and to
take advantage of the ESP32 features best. The ground module serves to pro-
vide the user with the input/output of the system while the module captures
sensor data and actuates based on commands received from the ground control
module.

4.3 Components

4.3.1 Micrcontroller

The heart of this system is a pair of ESP32 µc. These devices are made by
Espressif Systems and were chosen due to their built-in communication capa-
bilities (WiFi, Bluetooth, and Esp-Now) as well as their compatibility with the
Arduino IDE and Core. The board can be powered off of either USB or with
the 3.3 V/ 5 V pins. Another important feature of this board is its I2C support,
which allows for easy interfacing with the sensors that are attached. For ease of
use, two ESP32 ”dev boards” were used to build the prototype circuits and as
code test beds. In order for the two boards to communicate with each other, the
ESP-Now protocol was used. This feature, unique to the family, allows for peer-
to-peer communication without typical networking overhead. All programming
is done with the Arduino IDE in C. All code can be found in the appendix.

4.3.2 Sensors

Two major sensors were utilized: an MPL3115A2 altimeter and an LIS3DH
accelerometer, both on breakout boards from Adafruit. These allow for the
capture and logging of critical data such as the altitude reached and the accel-
eration throughout the flight. This data provides value both for the individual
rocket designer attempting to improve their designs, and any faculty who wants
a precise way to measure their students’ success.

2

4.3.3 Servo

A servo was added to the flight microcontroller. This was then configured to
accept commands from the ground allowing for the deployment of the parachute
remotely. It is programmed to have two positions, in order to open and close
a latch. Which state the servo is in is controlled by a switch on the ground
control box that sets a single bit. This bit is then transmitted to the flight
control board.

4.3.4 Ground Control Box

The user will interface with the system using a box with several switches and
buttons. This allows the user to control the rocket’s data logging and parachute
systems. This control box will also contain an SD card writer allowing for quick
and easy ingesting of the data.
A concern with the control box is that servo switch(and likely all other controls,
all though this behavior was only observed on the servo switch) is very sensitive
to noise. This can likely be resolved with using a pull-up resistor and by making
sure every component shares a ground.

4.4 Power

The board is powered with a battery connected between a ground pin and the
3.3 V pin. The entire power draw of the system is 370 mW which allows for
nearly two hours of battery life using a 3 V battery(CR123).

5 Mechanical Engineering

5.1 Goals and Overview

From a mechanical engineering standpoint, there were several points of em-
phasis. Similarly to the principles of electrical design used, lightweight was
considered a key emphasis. Beyond that, the focus was placed on the ease of
use and integration for the students. This means allowing younger students at
summer camps for example to be able to quickly add this feature to the rocket,
while also allowing upperclassmen to design more complex systems without in-
terference. Finally, a strong focus on durability will be paramount for repeated
uses of the system. In terms of design, there are two major components: the
capsule itself and the parachute release mechanism. Each of these pieces must
uphold the ideas of lightness, modularity, and durability.

5.2 Electronics Mount

One of the major challenges remaining in turning this into a full-fledged solution
is the mechanical elements. One of these is the mount. An ideal mount is

3

lightweight and capable of protecting the electronics from impact. Flexible
filament might be a viable option but this would require more expertise in
materials and modeling. The original prototype is described below: The rocket
telemetry device is currently constructed with an all-in-one electronics tray and
release mechanism. The electronics tray is 3D printed, with all wire routing
done on top of the tray. Future work that could be done to refine this would
be creating a routing pattern within the body of the electronics tray. A much
more drastic but better solution would also be to design a PCB that contains
all of the necessary modules. While durability is a paramount concern, it took
a backseat to meet some of our size constraints. Some thoughts for improving
the situation would be the addition of cushioning material(poly-fill or foam
were both considered but neither have had testing) as well as the addition of a
”crumple-zone” which would serve to absorb most of the kinetic energy upon
a crash landing. While the prototype has been printed in PLA, some weight
savings could be achieved if ABS was used in its place. Due to some difficulties
in printing ABS, an alternative weight-saving solution would be to test what
the minimum infill required would be. Currently, 20% infill is used as it is
a standard value, but this could be reduced. Current weight-saving measures
include several pockets being cut out around where no structural material is
needed.

5.3 Release System

The rocket is designed with the use of a parachute for recovery. While this
makes it easier to achieve certain durability and weight goals, it increases the
engineering load quite a bit. In order to solve some of these problems, research
was done into more traditional parachute releases. As this work was done, a
strong candidate emerged in the use of an elastic material both as a coupling
material and as a release mechanism. The basic working of the system involves
one piece of elastic permanently attached to the bottle top and another attached
in such a way as to be actuated by a servo. Upon release, the remaining piece
of elastic will pull off the top allowing for the parachute to be deployed, as well
as maintaining a connection with the the rocket. Currently, a modified washer
design is being used to couple the elastic to the rocket, but ”production” models
could be designed such that the student building the rocket will be responsible
for including the necessary mounting hardware in their fin design. Another
challenge that will need to be addressed is the release mechanism and servo.
The current system was designed for a slightly different parachute release, and
while it may be possible to modify the system, it may be wise to redo the design
altogether.

5.3.1 Parachute

The parachute we are using is one specifically designed for water rockets and
will be attached to the main body of the rocket. A streamer or other ”drogue”
mechanism may be necessary to ensure consistent and complete deployment of

4

the parachute.

6 Appendix

6.1 Adding New ESP32 Microcontrollers.

The first step to adding an ESP32 is to run the MACAddress finder on the new
board. This will return a MAC address, which is a persistent alphanumeric code
unique to each microcontroller. This code should be recorded, preferably on the
board with a label and in an external log such as a spreadsheet. This MAC
address will then be placed into the broadcastAddress variable of its paired
board.

6.2 Code Troubleshooting

During the development of the tracking and communication code, some difficul-
ties to diagnose appeared. This section lays out the issue and the solution as
well as steps taken to find the issue.

6.2.1 ’WiFi’ does not name a type

In order to create the WiFi network for the ESP32s to communicate with each
other a WiFi network needs to be created. An issue occurred with the WiFi
library and initializing the Wi-Fi station. This was caused due to an errant
brace that prematurely ended the setup function. This is unlikely to occur in
everyday deployment but was difficult to diagnose utilizing the error handling
in the Arduino IDE. Another possible cause, that would be more likely, is the
fact that Arduino has its own Wifi library for use with certain hats but that
is incompatible with the ESP32. There may be a more elegant solution if this
becomes an issue, but it is usually fine to remove the Arduino library. Mine
was located in the x86 Program Files folder for the Arduino but the installation
location may vary.

6.3 Datasheets

Links to each datasheet: ESP32: https://cdn-shop.adafruit.com/product-files/
3269/esp32_datasheet_en_0.pdf

Accelerometer:https://cdn-shop.adafruit.com/datasheets/LIS3DHappnote.
pdf

Altimeter:https://cdn-shop.adafruit.com/datasheets/1893_datasheet.pdf

5

https://cdn-shop.adafruit.com/product-files/3269/esp32_datasheet_en_0.pdf
https://cdn-shop.adafruit.com/product-files/3269/esp32_datasheet_en_0.pdf
https://cdn-shop.adafruit.com/datasheets/LIS3DHappnote.pdf
https://cdn-shop.adafruit.com/datasheets/LIS3DHappnote.pdf
https://cdn-shop.adafruit.com/datasheets/1893_datasheet.pdf

6.4 Code

6.4.1 Github Repository

The code below was current as of the upload to the Milligan Repository but may
have changed since or with further development from other students. The cur-
rent code base can be found at: https://github.com/weasal/EENG499BottleRocket.
This repo also contains additional code such as the MAC Address finder code,
which allows for new ESP32s to be added as ground or flight modules.

6.4.2 Ground Control Module

// Inc lude s ta tements
#include <esp now . h>//For ESP−NOW pro t o co l
#include <WiFi . h>//For Wifi Communication
#include <Wire . h>//I2C
//#inc l ude ”SPIFFS . h”
//Sensor l i b r a r i e s
#include <Adafruit LIS3DH . h>
#include <Adaf ru i t Sensor . h>
#include <Adafruit MPL3115A2 . h>
#include SD
//Define I2C pins
#define I2C SDA 21
#define I2C SCL 22

Adafruit LIS3DH l i s = Adafruit LIS3DH () ;

//Dec lara t ion o f Var iab l e s
const int WAIT TIME = 50 ; //Wait time between p o l l i n g
// Var iab l e s to ho ld data from the t e l eme t r y t r an smi t t e r
f loat pre s su r e ;
f loat a l t i t u d e ;
f loat a c c e l e r a t i o n ;
f loat timeFromLaunch=0;
bool deployRec ; //Create v a r i a b l e to see i f recovery measure shou ld be dep loyed based on i f pin 16 i s h igh

//Creation o f s t r u c t u r e f o r r e c ep t i on o f data
typedef struct s t ruc t mes sage {

f loat pres ;
f loat a l t ;
f loat acc ;

} s t ruc t mes sage ;
// Create a s t ruc t mes sage c a l l e d te lem to ho ld sensor read ings
s t ruc t mes sage telem ;

6

https://github.com/weasal/EENG499BottleRocket

//ESP−NOW con f i g u ra t i on
e sp now pe e r i n f o t pe e r In f o ;
//Address o f o ther board
u i n t 8 t broadcastAddress [] ={0xAC,0 x67 , 0 xB2 , 0xCC,0 x44 , 0 x88 } ;

//Functions to check data t ransmiss ion succe s s
void OnDataSent (const u i n t 8 t ∗mac addr , e sp now send s ta tu s t s t a tu s) {

S e r i a l . p r i n t (”\ r \nLast Packet Send Status :\ t ”) ;
S e r i a l . p r i n t l n (s t a tu s == ESP NOW SEND SUCCESS ? ”De l ive ry Success ” : ”De l ive ry Fa i l ”) ;

}

//Function to handle data r e c ep t i on
void OnDataRecv (const u i n t 8 t ∗ mac , const u i n t 8 t ∗ incomingData , int l en) {

memcpy(&telem , incomingData , s izeof (telem)) ;
S e r i a l . p r i n t (”Bytes r e c e i v ed : ”) ;
S e r i a l . p r i n t l n (l en) ;
p r e s su r e = telem . pres ;
a l t i t u d e = telem . a l t ;
a c c e l e r a t i o n = telem . acc ;

}

//Setup func t i on
void setup () {
//Creat CSV f i l e
F i l e dataLog = SD. open (”/data . csv ” , ”w”) ;
i f (! dataLog)
{

// F i l e not found
S e r i a l . p r i n t l n (” Fa i l ed to open t e s t f i l e ”) ;
return ;

}
else
{
dataLog . p r i n t l n (”Time , Alt i tude , Acce l e ra t ion , Pres sure ”) ;
dataLog . c l o s e () ;
}
// I n i t S e r i a l Monitor
S e r i a l . begin (115200) ;

// Set dev i c e as a Wi−Fi S ta t i on
WiFi .mode(WIFI STA) ;

// I n i t ESP−NOW
i f (e sp now in i t () != ESP OK) {

S e r i a l . p r i n t l n (”Error i n i t i a l i z i n g ESP−NOW”) ;
return ;

7

}

// Once ESPNow i s s u c c e s s f u l l y In i t , we w i l l r e g i s t e r f o r Send CB to
// ge t the s t a t u s o f Trasnmitted packe t
e sp now r eg i s t e r s end cb (OnDataSent) ;

// Reg i s t e r peer

memcpy(pee r In f o . peer addr , broadcastAddress , 6) ;
p e e r In f o . channel = 0 ;
pe e r In f o . encrypt = f a l s e ;

// Add peer
i f (esp now add peer(&pee r In f o) != ESP OK){

S e r i a l . p r i n t l n (” Fa i l ed to add peer ”) ;
return ;

}
e s p now r e g i s t e r r e c v cb (OnDataRecv) ;

}

//Main loop
void loop ()
{

// F i l e dataLog = SPIFFS . open (”/ data . csv ” , ”w”) ;
//Check i f the sw i t ch to dep loy recovery measures i s t o g g l e d
deployRec = d ig i ta lRead (1 6) ;

// Send message v ia ESP−NOW
e s p e r r t r e s u l t = esp now send (broadcastAddress , (u i n t 8 t ∗) &deployRec , s izeof (deployRec)) ; //Send the va lue o f deployRec
i f (r e s u l t == ESP OK)

{
S e r i a l . p r i n t l n (”Sent with suc c e s s ”) ;

}
else

{
S e r i a l . p r i n t l n (”Error sending the data”) ;

}

//Print incoming data to s e r i a l conso l e
S e r i a l . p r i n t (” p r e s su r e = ”) ; S e r i a l . p r i n t (p r e s su r e) ; S e r i a l . p r i n t l n (” hPa”) ;
S e r i a l . p r i n t (” a l t i t u d e = ”) ; S e r i a l . p r i n t (a l t i t u d e ∗ 3 . 2 8 1) ; S e r i a l . p r i n t l n (” f t ”) ;
S e r i a l . p r i n t (” \ tV e r t i c a l Acce l e r a t i on : ”) ; S e r i a l . p r i n t (a c c e l e r a t i o n) ; S e r i a l . p r i n t l n (” m/ s ˆ2 ”) ;
dataLog . p r i n t l n (timeFromLaunch) ;
dataLog . p r i n t (” , ”) ; dataLog . p r i n t (a l t i t u d e) ;
dataLog . p r i n t (” , ”) ; dataLog . p r i n t (a c c e l e r a t i o n) ;
dataLog . p r i n t (” , ”) ; dataLog . p r i n t (p r e s su r e) ;
dataLog . c l o s e () ;

8

timeFromLaunch=+WAIT TIME;
de lay (WAIT TIME) ; //Send data a f t e r the de f ined wa i t ing per iod

}

6.5 Flight Control Module

// Inc lude s ta tements
#include <esp now . h>//For ESP−NOW pro t o co l
#include <WiFi . h>//For Wifi Communication
#include <Wire . h>//I2C l i b r a r y
//Sensor l i b r a r i e s
#include <Adafruit LIS3DH . h>
#include <Adaf ru i t Sensor . h>
#include <Adafruit MPL3115A2 . h>
//Define I2C pins
#define I2C SDA 21
#define I2C SCL 22

Adafruit LIS3DH l i s = Adafruit LIS3DH () ;

Adafruit MPL3115A2 baro ;

e s p now pe e r i n f o t pe e r In f o ;
const int WAIT TIME = 50 ;
// REPLACE WITH THE MAC Address o f your r e c e i v e r
u i n t 8 t broadcastAddress [] = {0xAC, 0x67 , 0xB2 , 0xCC, 0x43 , 0x74 } ;

// Define v a r i a b l e s to s t o r e BME280 read ings to be sen t
f loat pre s su r e ;
f loat a l t i t u d e ;
f loat a c c e l e r a t i o n ;

// Define v a r i a b l e s to s t o r e incoming read ings
bool deployRec ;

// Var iab l e to s t o r e i f sending data was s u c c e s s f u l
St r ing suc c e s s ;

// S t ruc tu re example to send data
//Must match the r e c e i v e r s t r u c t u r e
typedef struct s t ruc t mes sage {

f loat pres ;
f loat a l t ;
f loat acc ;

} s t ruc t mes sage ;

9

// Create a s t ruc t mes sage c a l l e d BME280Readings to ho ld sensor read ings
s t ruc t mes sage telem ;

// Create a s t ruc t mes sage to ho ld incoming sensor read ings

// Ca l l back when data i s sen t
void OnDataSent (const u i n t 8 t ∗mac addr , e sp now send s ta tu s t s t a tu s) {

S e r i a l . p r i n t (”\ r \nLast Packet Send Status :\ t ”) ;
S e r i a l . p r i n t l n (s t a tu s == ESP NOW SEND SUCCESS ? ”De l ive ry Success ” : ”De l ive ry Fa i l ”) ;
i f (s t a tu s ==0){

su c c e s s = ”De l ive ry Success :) ” ;
}
else {

su c c e s s = ”De l ive ry Fa i l : (” ;
}

}

// Ca l l back when data i s r e c e i v ed

void OnDataRecv (const u i n t 8 t ∗ mac , const u i n t 8 t ∗ incomingData , int l en) {
memcpy(&deployRec , incomingData , s izeof (deployRec)) ;
S e r i a l . p r i n t (”Bytes r e c e i v ed : ”) ;
S e r i a l . p r i n t l n (l en) ;
S e r i a l . p r i n t (”Should recovery be deployed (0 f o r no ; 1 f o r yes) : ”) ;
S e r i a l . p r i n t l n (deployRec) ;

}

void setup () {
// I n i t i a l i z e S e r i a l Monitor
S e r i a l . begin (115200) ;

pinMode (16 ,OUTPUT) ;

S e r i a l . p r i n t l n (”Adafruit MPL3115A2 t e s t ! ”) ;

S e r i a l . p r i n t l n (”LIS3DH t e s t ! ”) ;

i f (! l i s . begin (0 x18)) { // change t h i s to 0x19 f o r a l t e r n a t i v e i2c address
S e r i a l . p r i n t l n (”Couldnt s t a r t ”) ;
while (1) y i e l d () ;

}
S e r i a l . p r i n t l n (”LIS3DH found ! ”) ;

// l i s . setRange (LIS3DH RANGE 4 G) ; // 2 , 4 , 8 or 16 G!

10

S e r i a l . p r i n t (”Range = ”) ; S e r i a l . p r i n t (2 << l i s . getRange ()) ;
S e r i a l . p r i n t l n (”G”) ;
i f (! baro . begin ()) {

S e r i a l . p r i n t l n (”Could not f i nd senso r . Check wir ing . ”) ;
while (1) ;

}

// use to s e t sea l e v e l p re s sure f o r curren t l o c a t i o n
// t h i s i s needed f o r accura te a l t i t u d e measurement
// STD SLP = 1013.26 hPa
baro . s e tSeaPre s sure (1 0 1 3 . 2 6) ;

// Set dev i c e as a Wi−Fi S ta t i on
WiFi .mode(WIFI STA) ;
// I n i t ESP−NOW
i f (e sp now in i t () != ESP OK) {

S e r i a l . p r i n t l n (”Error i n i t i a l i z i n g ESP−NOW”) ;
return ;

}

// Once ESPNow i s s u c c e s s f u l l y In i t , we w i l l r e g i s t e r f o r Send CB to
// ge t the s t a t u s o f Trasnmitted packe t
e sp now r eg i s t e r s end cb (OnDataSent) ;

// Reg i s t e r peer

memcpy(pee r In f o . peer addr , broadcastAddress , 6) ;
p e e r In f o . channel = 0 ;
pe e r In f o . encrypt = f a l s e ;

// Add peer
i f (esp now add peer(&pee r In f o) != ESP OK){

S e r i a l . p r i n t l n (” Fa i l ed to add peer ”) ;
return ;

}
// Reg i s t e r f o r a c a l l b a c k func t i on t ha t w i l l be c a l l e d when data i s r e c e i v ed
e s p now r e g i s t e r r e c v cb (OnDataRecv) ;

}

void loop () {
i f (deployRec==1)

{
d i g i t a lWr i t e (16 , HIGH) ; // Set pin 13 h igh to a l l ow fo r recovery measures to be dep loyed
S e r i a l . p r i n t l n (”Deploying ”) ;

}
else
{

11

d i g i t a lWr i t e (16 ,LOW) ; // Set pin 13 low to turn o f f LED
}
pre s su r e = baro . ge tPre s sure () ;
a l t i t u d e = baro . g e tA l t i tude () ;
// temperature = baro . getTemperature () ;
s e n s o r s e v e n t t event ;
l i s . getEvent(&event) ;
a c c e l e r a t i o n = event . a c c e l e r a t i o n . z ;
telem . pres = pre s su r e ;
telem . a l t = a l t i t u d e ;
telem . acc = a c c e l e r a t i o n ;
e s p e r r t r e s u l t = esp now send (broadcastAddress , (u i n t 8 t ∗) &telem , s izeof (telem)) ;
de lay (WAIT TIME) ; //Wait 1 ms to check again

}

12

	Introduction
	Terminology
	Background & Problem Statement
	Electrical Engineering
	Overview and Goals
	Architecture
	Components
	Micrcontroller
	Sensors
	Servo
	Ground Control Box

	Power

	Mechanical Engineering
	Goals and Overview
	Electronics Mount
	Release System
	Parachute

	Appendix
	Adding New ESP32 Microcontrollers.
	Code Troubleshooting
	'WiFi' does not name a type

	Datasheets
	Code
	Github Repository
	Ground Control Module

	Flight Control Module

