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Abstract

The shortest path between two points is a straight line. However, finding
the optimum path from one point to another with the introduction of a given
boundary condition on the domain between the two points does not possess
such a trivial solution. The boundary condition is expressed in the form of
a twice-differentiable function and serves as an upper or lower bound for the
desired path depending on characteristics of the boundary function such as
concavity and extrema behaviors on the domain of interest. The obtained path
that minimizes arc length without violating the boundary function is deemed
the Rubber Band Solution. This solution type is named due to its similarities
to the path that a rubber band creates when it is stretched around an obstacle
by minimizing the potential energy from the elastic forces in the band. Since we
seek an analytic solution, we first consider using boundary arcs that are circles.
We then generalize to boundary arcs that can be described by any differentiable
function by finding the circle of curvature at the the local max/min of the
function on the desired domain. The case where the boundary arcs are circles
serves as an approximation for the optimized path around any of the more
general boundary functions.
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Creating the Region and Defining Optimization

Commonly it is the objective of individuals to get from one point to another
in a desired manner. For example, it is typically the objective of a GPS system
to inform a driver of the quickest, or in other words, the time optimized path
to get from an initial location to a desired destination. Clearly, the GPS unit is
calculating route times for numerous different paths that the driver could take.
After potential paths have been eliminated and trip times have been calculated,
the unit returns the route that will take the least amount of time for the driver
to reach his/her destination. For the problem in this paper, we assume that
to get from an initial location to a destination, there is only a single route and
the traveler is the only driver on the road. The route is a multilane highway
that connects the initial and final locations and is not necessarily straight from
start to finish. Assume also that the driver never deviates from the speed limit
from the start to the finish of the trip. Therefore, with this setup, an optimized
path must be a path that allows the driver to minimize the distance traveled.
The driver is restricted to the multilane highway that connects their start point
to their destination. Thus, the optimized path must be some path within the
boundaries of the multilane road that allows for a minimum distance relative to
other possible routes within the restricted road parameters.

In two-space, it is our desire to find the optimized path between two points
such that the path must not cross over a set of bounds defining the region mod-
eling the multilane highway. To this end, we will first assume that the bounds of
this highway can be modeled by two twice-differentiable (likely offset) functions;
one defining a lower bound and the other defining the upper bound. Thus, the
region of optimization will be between (and including) these boundary curves.
Let A denote the initial point and B denote the destination point, and suppose
that these points are within the region of optimization. The optimal (shortest)
path from A to B is one that must stay within the region of optimization, and
it is allowed to travel along any of the boundary curves. Moreover, this optimal
path Γ will solve the problem:

minimize arc length of γ, where γ is any path from A to B in the region

We show later that Γ is a piecewise function with a continuous first derivative in
which some portions are straight line segments tangent to one (or both) of the
boundary curves at certain points, and other portions follow a boundary curve.
The following illustration shows an example of what we would expect Γ would
look like for a highway bounded by the offset curves pictured. The portions
highlighted in green show where Γ is allowed to trace either of the boundary
curves, and the portions in red are where Γ is in the interior of the region.
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An important thing to note in the illustration are the 4 points with x-
coordinates labeled x1, x2, x3, and x4. These points in this example will define
the points on the optimal path Γ where the portions defined by segments (red)
will be tangent to a boundary curve.

In order to approach this problem in a manner that will yield analytic solu-
tions, it is necessary to use a very specific kind of boundary function. Although
any continuous function can be a boundary function in the most general case, it
is difficult to find a closed solution defining specific optimized paths that can be
expressed as piecewise functions. In particular, it is currently unknown if there
exists an analytic expression for finding the points at which the segment por-
tions of Γ would be tangent to a given boundary curve defined by y = f(x). To
deal with this difficulty, we first consider using a circle as one bounding curve.
In this case, we are able to obtain a closed formula for computing the points of
tangency with the portions of Γ that are line segments. Then we generalize this
to the case in which one of the boundaries is modeled by a twice-differentiable
function y = f(x) by considering circles and radii of curvature. In particular, we
compute the circles of curvature of y = f(x) tangent to a local min or max and
approximate the points where segment portions of Γ will be tangent to y = f(x)
using the analysis in the case where the boundary is a circle.

The Simplest Case - A Circle Centered at (0, 0)

We first consider an obstacle circle centered at the origin and endpoints, A
and B, lying on the x-axis. Later, we will consider the more general case where
A is either in quadrant II or III, and B is either in quadrant I or IV. In general,
the equation of the circle of radius r centered at (x0, y0) is

(x− x0)2 + (y − y0)2 = r2. (1)
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Moreover, we denote the coordinates of points A and B as follows:

A = (xA, yA), B = (xB , yB). (2)

In our current case, we have x0 = y0 = 0, and yA = yB = 0. Therefore, (1) and
(2) imply that we are solving the problem:

Find the shortest path from (xA, 0) to (xB , 0) around the obstacle
x2 + y2 = r2.

The proposed solution will follow a path from point A along a straight line to
the tangential point on the boundary arc then follow the boundary arc until a
point where a straight line to point B is tangential to the arc and at that time
will exit the arc and follow the straight path to B.

Our next goal is to find the coordinates of the point where the line through A is
tangent to the circle x2 + y2 = r2. Let (xAI , yAI) denote this point of tangency.
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Thus, the segment from point A to (xAI , yAI) will give the first section of the
optimal path from point A to B. Let RA denote the distance from point A to
the center of the obstacle circle (in our current case, RA = −xA). The following
Theorem establishes the location of the point (xAI , yAI).

Theorem 1: (xAI , yAI) =

(
−r2

RA
, r
√

1− ( r
RA

)2
)

Proof of Theorem 1: According to the Tangent Line Theorem in [1], the seg-
ment from point A to (xAI , yAI) is perpendicular to the segment from (0, 0),
to (xAI , yAI). Therefore, the triangle formed (in green) in the above illustra-
tion is a right triangle. Let D denote the distance from point A to (xAI , yAI).
According the the Pythagorean Theorem,

r2 +D2 = R2
A

⇒ D2 = R2
A − r2 (3)

Next, we construct the circle centered at point A with radius D. The equation
of this circle is

(x− xA)2 + y2 = D2 (4)

Note that circle (4) will intersect the obstacle circle, x2 +y2 = r2, in two places.
We will choose the intersection point on the upper half of the plane. Solving
x2 + y2 = r2 for y, we obtain the equation for the top semicircle y =

√
r2 − x2.

Similarly, solving (4) for y yields the top semicircle y =
√
D2 − (x− xA)2.

The x-coordinate of the point of tangency, xAI , will be the same as the x-
coordinate of the point of intersection between semicircles y =

√
r2 − x2 and
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y =
√
D2 − (x− xA)2. This implies that xAI satisfies the following:√

r2 − x2AI =
√
D2 − (xAI − xA)2

⇒ r2 − x2AI = D2 − (xAI − xA)2

⇒ r2 − x2AI = R2
A − r2 − (xAI − xA)2 by (3)

⇒ r2 − x2AI = R2
A − r2 − (xAI − (−RA))2 since RA = −xA in this case

⇒ 2r2 − x2AI = R2
A − (xAI +RA)2

⇒ 2r2 − x2AI = R2
A − (x2AI + 2RAxAI +R2

A)

⇒ 2r2 − x2AI = R2
A − x2AI − 2RAxAI −R2

A

⇒ 2r2 = −2RAxAI

⇒ −r
2

RA
= xAI . (5)

Since (xAI , yAI) lies on the obstacle circle, yAI =
√
r2 − x2AI must be satisfied.

Substitution of (5) into this equation leads to yAI = r
√

1− ( r
RA

)2. This com-

pletes the proof.

Now that we have the point of tangency established, we can easily find the
equation of the line through points A and (xAI , yAI). The slope of this line is
given by

m =
(yAI − yA)

(xAI − xA)

Therefore, the equation of the line defining the first segment along the shortest
path is given by

y =
yAI − yA
xAI − xA

(x− xA) + yA (6)

Next, the line through B tangent to the obstacle circle needs to be estab-
lished. We can employ the same method used earlier; define RB to be the
distance from point B to the center of the obstacle circle (which is (0, 0) in this
case, and let (xBI , yBI) be the point of tangency. Using an analogue to Theorem
1, one obtains

(xBI , yBI) =

 r2

RB
, r

√
1−

(
r

RB

)2
 (7)

Then (similar to (6)) one finds that the equation of the line defining the last
segment along the shortest path is given by

y =
yBI − yB
xBI − xB

(x− xB) + yB (8)

Summarizing all of the results in the simplest case, we have the following result:
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Theorem 2 - The Rubber Band Solution for the Simplest Case: Sup-
pose r > 0, and consider the obstacle circle x2 + y2 = r2. Let A = (xA, 0),
B = (xB , 0), where xA < −r and xB > r. Then the shortest path (a.k.a. the
Rubber Band Solution) from A to B around the obstacle circle is defined by the
piecewise function

R(x) =


y = [yAI/(xAI − xA)](x− xA) if x ∈ [xA, xAI ]

y =
√
r2 − x2 if x ∈ [xAI , xBI ]

y = [yBI/(xBI − xB)](x− xB) if x ∈ [xBI , xB ]
,

where xAI =
r2

xA
and xBI =

r2

xB
.

Remark: This follows from (5), (6), (7), and (8) because yA = yB = 0, RA =
−xA, and RB = xB .

The General Case - Circle Centered at (x0, y0)

Our next step is to extend this process to a more general case with a circle
centered at any point (x0, y0). In this case, the equation for the obstacle arc is
given in (1), namely.

(x− x0)2 + (y − y0)2 = r2.

Furthermore, the endpoints A and B will also be generalized. We will no longer
assume that these points lie on the line defining a diameter of the obstacle circle.

We will, however, still assume that the line
←→
AB intersects the obstacle circle in

two points. In other words, the x and y values for the endpoints are such that a
straight-line solution is not obtainable. If A = (xA, yA) and B = (xB , yB), then
the following must be satisfied:√

(xA,B − x0)2 + (yA,B − y0)2 > |r|. (9)

Thus, in this case we are interested in the following problem (as given by
the criteria in (1) and (2)):

Find the shortest path from (xA, yA) to (xB , yB) around the obstacle
(x− x0)2 + (y − y0)2 = r2.
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We first translate the boundary circle back to the origin, and we shift the points
A and B by the same amount (horizontally by x0 units and vertically by y0
units). Let AT and BT denote the image of points A and B, respectively, after
the translation.

After this is done, the points AT and BT may not lie on the x-axis (as points
A and B did in the first case). Thus we will also rotate the circle along with
point AT by an appropriate amount so that the new point, call it ATR, lies on
the negative x-axis (as A did in the first case). Then we apply the results from
the first case to finding the line from ATR tangent to the translated circle. The
same process is applied to point BTR, the image of BT after an appropriate
rotation maps BTR onto the positive x-axis.
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With the process outlined, let’s first establish the images of points A and B
under the translation:

AT = (xA − x0, yA − y0) = (xAT , yAT ) (10)

BT = (xB − x0, yB − y0) = (xBT , yBT ) (11)

Note that it is realistic to maintain endpoints on opposite sides of the vertical
axis through the obstacle circle, the y-axis for the translated obstacle circle, as
well as y values inside the range of the obstacle arc.

Due to the translation, the y value of the endpoints will most likely be non-
zero. Therefore, we must introduce a few new steps in the process to deal with
this dilemma. Our first goal is to decide what side of the obstacle circle is the
best to create a path around. It is natural to think that depending on the
placement of the endpoints relative to the center of the circle and one another,
that connecting the points around the top of the circle might be shorter than
connecting them around the bottom, or vise versa. To test which path direction
will yield the true optimum arc, we will test the placement of one point relative
to the other and the center of the circle. To do this, we construct a line of
symmetry passing through the center of the obstacle circle. This line will pass
through point A and the origin.
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Thus the equation of this line of symmetry (indicated in orange in the figure)
is as follows:

y − (yA − y0) =
yA − y0
xA − x0

[x− (xA − x0)]

⇒ y − yAT =
yAT
xAT

(x− xAT )

⇒ y =
yAT
xAT

(x− xAT ) + yAT (12)

⇒ fS(x) =
yAT
xAT

(x− xAT ) + yAT ⇒ fS(x) =
yAT
xAT

In the above illustration, the point (xS , yS) is defined by (xBT , fS(xBT )).
Testing point B with respect to this line will enlighten us to the direction we
must go around the obstacle. If point B lies above the line, or

yBT ≥ yS ,

then a path around the top of the obstacle circle will be the shortest route.
Similarly, if point B lies below the line of symmetry, or

yBT ≤ yS ,

the path direction must be below the obstacle circle. If B lies on the line of
symmetry, both routes will yield equal arc lengths so either one is a viable path.

Going over both cases, a path over the top and a path around the bottom,
is repetitive so illustrating one of the two will be sufficient for showing the
necessary techniques to deal with the added generality. The top route will
be illustrated here and the bottom route will be included in the full process
illustration in Appendix A.

The first step to creating the solution by finding the tangential points to the
obstacle arc with off axis endpoints is to place the endpoints on the axis; as
was the case in the previous section. To do this, a rotation of an endpoint will
be made, and the obstacle circle will be rotated about the origin by the same
amount to create a situation identical to the simplest case. Note that rotations
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of the entire system, like the translations, will not affect the accuracy of the
solution due to the isotropy of the system in two-space. Rotating the endpoint
to the horizontal axis coupled with the rotation of the obstacle circle is a valid
step as long as the entire system is rotated and then rotated back to its original
position to create the final solution. The rotation of the A endpoint to the x
axis creates the following point that will then be used to find the tangent point
on the obstacle circle at which point both points will be rotated in an equal and
opposite manner to the rotation of A to the axis initially.

ATR = (xATR, yATR) =

(
−
√
x2AT + y2AT , 0

)
(13)

The tangent point on the obstacle arc follows identically from Theorem 1, the
proof of which has been established. Using the most inclusive notation, the
tangent point (xATRI , yATRI) is:

(xATRI , yATRI) =

−r2
RA

, r

√
1−

(
r

RA

)2
 (14)

In (14), RA =
√
x2AT + y2AT . Now that the tangent point and the A endpoint are

defined in a rotated state, it is necessary to rotate each of them to their correct
positions. Clearly, A returns to (xAT , yAT ) while (xATRI , yATRI) undergoes
an equal rotation to a currently unknown position, namely (xATI , yATI) (See
illustration below).

The following Theorem establishes the location of the point (xATI , yATI) if we
choose to go over the top of the obstacle.
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Theorem 3: (xATI , yATI) = (r cos θA, r sin θA), where

θA = π + α+ β, tan(α) =
yAT
xAT

, and tan(β) =
yATRI
xATRI

.

Proof of Theorem 3: To consider the proper angle θA that we will rotate by, we
shall examine two cases. In each case, we define angles α and β as follows: α is
the angle between (xATRI , yATRI) and (xATI , yATI) and β is the interior angle
of the right triangle formed by (xATRI , 0), (xATRI , yATRI), and the origin. α
and β are clear from the illustration on the previous page, but the illustration
shown is valid in the case when yAT < 0.

Case I: Suppose yAT < 0. Since xAT < 0, then

α = tan−1
(∣∣∣∣ yATxAT

∣∣∣∣) = tan−1
(
yAT
xAT

)
(15)

Since we are choosing to go over the top of the obstacle, xATRI < 0 and
yATRI > 0. Thus

α = tan−1
(∣∣∣∣ yATRIxATRI

∣∣∣∣) = − tan−1
(
yATRI
xATRI

)
(16)

Therefore it follows from (15) and (16) (as can be seen in the previous illustra-
tion)

θA = π − (β − α) = π + tan−1
(
yAT
xAT

)
+ tan−1

(
yATRI
xATRI

)
Case II: Suppose yAT > 0. Since xAT < 0, then

α = tan−1
(∣∣∣∣ yATxAT

∣∣∣∣) = − tan−1
(
yAT
xAT

)
(17)
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Since we are choosing to go over the top of the obstacle, xATRI < 0 and
yATRI > 0. Thus

α = tan−1
(∣∣∣∣ yATRIxATRI

∣∣∣∣) = − tan−1
(
yATRI
xATRI

)
(18)

Therefore it follows from (17) and (18) (as can be seen in the previous illustra-
tion)

θA = π − (α+ β) = π + tan−1
(
yAT
xAT

)
+ tan−1

(
yATRI
xATRI

)
This completes the proof for Theorem 3 based on endpoint A and a path over
the top of the obstacle arc.

Like before, the process is the same for the B segment of the path. Once the
tangent point value is defined for the B segment, all that is left in the process is
to translate the entire system back to its original center and create the tangent
line pieces of the solution using the newly retranslated endpoints and tangent
points.

The completion of this process yields the following result:

Theorem 4 - The Rubber Band Solution for the General Case: Sup-
pose r > 0, and consider the obstacle circle (x − x0)2 + (y − y0)2 = r2.
Let A = (xA, yA), B = (xB , yB), where

√
(xA − x0)2 + (yA − y0)2 > |r| and√

(xB − x0)2 + (yB − y0)2 > |r|. Then the shortest path (a.k.a. the Rubber
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Band Solution) from A to B around the obstacle circle is defined by the piece-
wise function

R(x) =


y =

(yAI − yA)

(xAI − xA)
(x− xA) + yA if x ∈ [xA, xAI ]

y = ±
√
r2 − (x− x0)2 + y0 if x ∈ [xAI , xBI ]

y =
(yBI − yB)

(xBI − xB)
(x− xB) + yB if x ∈ [xBI , xB ]

,

Remark: In the second line of the definition of R, the + in ± is chosen if the
shortest path is over the circle, and the − is chosen if the shortest path is under
the circle.

Added Malleability

The above demonstration of an optimum path is the most general solution
for a given circle as an obstacle curve, but how can this be extended to a more
general set of boundary functions? For this extension, an exact analytic solution
will not be our focus. Instead, a general solution using an approximation method
based on the analytic solution from the obstacle circle will be employed to help
incorporate boundaries that are not circular arcs. To do this, the radius of
curvature for a function will be used to create a circle imbedded in the boundary
function that can then be used to approximate the optimum path around the
given boundary function. Before any illustrations of the beginnings of this
process, it is helpful to look at the general expression for radius of curvature.
Given a function f(x),

Rc =
[1 + f ′(x)2]

3
2

f ′′(x)
(19)

Note that the boundary function, f(x) must be twice differentiable in order to
satisfy the above equation. Another thing to note: In (19), the value of Rc is
allowed to be negative. In fact, Rc < 0 for all x in which f is concave down.

It is our concern to know where to construct the circle using the radius of
curvature. To do this, the first derivative of the function must be evaluated
and set equal to zero to find the x-value where a maximum or minimum occurs
on the expressed domain depending on the concavity of f(x) about the relative
extrema. In other words, the value x0 is the x-value satisfying the following
equation

f ′(x) = 0 : x ∈ [xA, xB ] (20)

From there, the center coordinates and the radius of the needed obstacle circle
can easily be expressed as follows using the known values.

(x0, y0) = (x0, f(x0) +Rc) (21)
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Note that x0 is the x-value corresponding to a critical point of f(x) on the
interval.

(x− x0)2 + (y − (f(x0) +Rc))
2 = R2

c (22)

It is necessary to know that it might be the case where the line of symmetry
condition conflicts with the boundary type of the equation. For example, if the
boundary function is a lower bound but the symmetry relationship implies a
path underneath the circle, it is a violation of the bound to create this path.
Therefore, the path across the top of the obstacle circle would need to be used
in order to create a path that is sensible for the boundary function. More con-
cretely, the answer to the needed path for this set up comes from a concavity
test about the relative extrema. Knowing this allows for the calculations as
explained in the previous section to be carried out and the creation of an ap-
proximate optimum path.

Theorem 5 - The Rubber Band Solution Approximation for a Gen-
eral Boundary Function: Let F (x) be a boundary function and allow A =
(xA, yA), B = (xB , yB), such that a straight line from A to B intersects F (x)
twice. Then the shortest path (a.k.a. the Rubber Band Solution) from A to B
in the bounded region is defined by the piecewise function

R(x) =


y =

(yAI − yA)

(xAI − xA)
(x− xA) + yA if x ∈ [xA, xAI ]

y =
√
r2 − (x− x0)2 + y0 if x ∈ [xAI , xBI ]

y =
(yBI − yB)

(xBI − xB)
(x− xB) if x ∈ [xBI , xB ]

,

where (xAI , yAI) =

(
−R

2
C

RA
,±
√
R2
C − (xAI)2 + (f(x0)±RC)

)
and (xBI , yBI) =

(
R2
C

RB
,±
√
R2
C − (xBI)2 + (f(x0)±RC)

)
Many standard functions in the real plane would create circles of curvature

that work well as an approximation for optimization. Generally, any function
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with a defined and nonzero second derivative on a concerned interval would
fit this approximation technique. More specifically, any function with at least
one local extrema to create an obstacle circle about allows for the most precise
application of the above procedure.

The Importance of Proof

It may be enlightening for the reader to have more background on the inspi-
ration for the above method. Imagine setting a sphere with a flat bottom on a
tabletop in front of you. I like to think of a Magic 8 Ball sitting looking glass
down on the table. Now take a lengthy rubber band (about the length of the
circumference of the sphere) and stretch it between your two index fingers. You
can imagine the pull of the rubber band on both of your fingers as it tends back
to its original unstretched state. Now, with rubber band extended between your
fingers, lower your hands so that each of your two index fingers hovers above
the table on either side of the sphere. The rubber band is now going from one
of your fingers, over the top of the sphere, and then connecting to your other
finger. Like before, the rubber band is tending back to its unstretched state.
Physically, the elastic nature of the rubber band is tending back to an equilib-
rium state with a significantly lower potential energy between the atoms in the
band. The effects of this are the downward force on the sphere and the inward
force on your fingers. You can imagine the shape of the rubber band matching
that of the piecewise function illustrated before; going from one finger directly
to the tangent point on the surface of the sphere and then following the sphere’s
surface across to the next tangent point and finally to your other finger. It is
senseless to think that the rubber band may slouch lower than the tangent point
or somehow rise above it to minimize its internal potential energy. Therefore, we
can know with a significant level of confidence based on this natural illustration
that the path we have defined previously is indeed the optimum path.

However to know with complete confidence, we demonstrate with logical
proof.

Proof:
Let ε > 0 and δ > 0.
Let f(x, y) = r2 such that:

x2 + y2 = r2

⇒ y =
√
r2 − x2

Due to the symmetry of the system about the x and y axis and the homogeneity
of two-space, we will use the positive portion of the arc centered at (0, 0) without
loss of generality. Thus,

f(x) =
√
r2 − x2 (23)

Allow the point A = (xA, yA) :
√
x2A + y2A > |r| and xA < 0

Let T = (xT , yT ) : xT =
−r2√
x2A + y2A

=
−r2

RA
and yT = f(xT ).

18



Let R(x) and g(x) be functions on the interval [xA, xM ] where xM = 0 such
that

f(xM ) = R(xM ) = g(xM ) (24)

and
f(xA) = R(xA) = g(xA) (25)

Now we proceed by cases.
Case I:

xε = xT − ε (26)

f(xε) = g(xε) < R(xε) (27)

R(xi) > g(xi)∀xi ∈ (xA, xT ) (28)

f(xT ) = R(xT ) = g(xT ) (29)

f(xi) = R(xi) = g(xi)∀x ∈ [xT , xM ] (30)

See that the arc length for R(x) on [xA, xT ] is

S(R(x)) =
√

(f(xT )− yA)2 + (xT − xA)2

Now we look at the arc length of g(x) on [xA, xT ]

S(g(x)) =
√

(f(xε)− yA)2 + (xε − xA)2 + rθ

where θ is the angle between g(xε) and g(xT ). Thus |θ| > 0 due to xε < xT
Looking at the following inequalities,

S(R(x)) <
√

(f(xε)− yA)2 + (xε − xA)2 +
√

(f(xε)− f(xT ))2 + (xε − xT )2

and√
(f(xε)− yA)2 + (xε − xA)2 +

√
(f(xε)− f(xT ))2 + (xε − xT )2 < S(g(x))

implies justly that
S(R(x)) < S(g(x)) : x ∈ [xA, xT ] (31)

Note that since for this case, R(x) = g(x)∀x ∈ [xT , xM ] , this above inequality
regarding the arc lengths on the domain [xA, xT ] is sufficient for the entire case.
Therefore,

S(R(x)) < S(g(x)) : x ∈ [xA, xM ] (32)

Case II:
xε = xT + ε (33)

f(xε) = R(xε) = g(xε) (34)

f(xT ) = R(xT ) < g(xT ) (35)

R(xi) < g(xi)∀xi ∈ (xA, xε) (36)

f(xi) = R(xi) = g(xi)∀x ∈ [xT , xM ] (37)

In order to show that the arc length of g(x), S(g(x)), is greater than S(R(x))
for this case, we first extend a ray from (0, 0) through (xT , f(xT )) and out some
distance δ where it intersects g(x). Note that
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δ > 0⇒ xδ < xT < xε

In order to minimize S(g(x)) under these conditions, define

g0(x) =


y =

g(xδ)− yA
xδ − xA

(x− xA) + yA ifx ∈ [xA, xδ

y =
g(xε)− g(xδ)

xε − xδ
(x− xε) + g(xε) ifx ∈ [xδ, xε]

Therefore, g0(x) takes a straight line path from A to the end of the extended ray
δ and then a straight line from δ to f(xε). Note that since δ > 0, S(g0(x)) ≤
S(g(x)). Now, we consider S(g0(x)) on the following intervals: x ∈ [xA, xδ]
and x ∈ [xδ, xε] and compare to S(R(x)) on x ∈ [xA, xT ] and x ∈ [xT , xε]
respectively.

Since δ is an extension of the radius, r, of f(x), g0(x) for x ∈ [xA, xδ] is
the hypothenuse of the right triangle formed by g0(x), R(x), and δ. Thus, by
the Pythagorean Theorem, comparing S(g0(x)) and S(R(x)) on their respective
first intervals mentioned above will always yield

S(g(x)) ≥ S(g0(x)) > S(R(x)) (38)

Now, with concern to the remaining intervals, g(x) : x ∈ [xδ, xε] and R(x) :
x ∈ [xT , xε], we simply need to show that S(g(x)) ≥ S(R(x)) in order for R(x)
to be the optimized path along the entire interval [xA, xM ].

In order to minimize S(g(x)) : x ∈ [xδ, xε] we take the limit of S(g(x)) as δ
approaches 0. Clearly,

δ → 0⇒ g(x)→ R(x) = f(x) : x ∈ [xδ, xε] (39)

due to the boundary condition imposed on g(x) and R(x). Thus

lim
δ→0

xδ = xT ⇒ lim
δ→0

S(g(x)) = S(R(x)) (40)

Therefore,
S(R(x)) ≤ S(g(x))∀x ∈ [xA, xε] (41)

Note that since for this case, R(x) = g(x)∀x ∈ [xε, xM ] , this above inequality
regarding the arc lengths on the domain [xA, xε] is sufficient for the entire case.
Therefore,

S(R(x)) < S(g(x)) : x ∈ [xA, xM ] (42)

This completes the proof.

Time Is Of The Essence

With more time to consider applications of this process, the original inspira-
tion of a roadway would be a lengthy and satisfying application of the aforemen-
tioned procedure. Using a set of points that would define the perimeter of the
road, a boundary function can be created using a curve fitting technique such
as splining. By shifting the function that defines one side of the road a number
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of units corresponding to the number of lanes, the two functions create upper
and lower bounds for the optimum path. From there, the region can be split
into reasonable subregions where the boundary functions have the right char-
acteristics to create obstacle circles for the application of our process. Creating
the optimum path in each region and fitting those curves together can make
a reasonable approximation for the overall optimum path a driver should take
along the multilane road from their start position to the desired destination.

Furthermore, analytic solutions to this problem for actual elastic bands
would also be a worthy application for any physics, math, or engineering stu-
dent. Working the optimum path problem from an energy standpoint is a signif-
icant change of perspective that should lead to a supporting solution. In doing
so, attacking the task using calculus of variations and Lagrangian/Hamiltonian
might allow for a more elegant and seemingly powerful method to devise opti-
mum paths for physical circumstances. If analogous connections can then be
made between the physical approach and the general approach, it may be the
case that a separate, more fluid and supporting process can be used to find
optimum paths in two-space.

More directly related to this project, an extension using a quadratic bound-
ary arc coupled with a second-order Taylor Series expansion for generalization,
one could create the Rubber Band Solution for a different set of boundary func-
tions. Once the solution was created, the Taylor Series approximation could
be used to approximate the Rubber Band Solution for a more general set of
boundary functions. Comparing these approximate optimized paths to those
created using a radius of curvature technique lends itself to an error analysis
study between the two approximation methods.

Ultimately, a complete generalization of the problem is ideal. If a process
can be made to find the optimum path through any bounded region using any
set of functions as boundaries, the process of using circles as obstacles becomes
obsolete for the more general solution. However, the accessibility to this level of
generalization seems to be outside of the scope of undergraduate studies. It is
also natural to desire an extension to three dimensions for optimization of paths
between two endpoints. This is an open area of research in mathematics and is
therefore best left to the professionals with the tools to attack the problem.
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Appendix A

Here we will demonstrate the process mathematically for the most general
case using an obstacle circle in two-space and a path underneath unlike the path
illustrated previously.

Given an obstacle circle with center coordinates (x0, y0) and radius r and
endpoints A = (xA, yA) and B = (xB , yB)

(x− x0)2 − (y − y0)2 = r2 (43)

We first translate the boundary arc to the origin

x2 + y2 = r2 (44)

and the endpoints about it so that

A = (xA − x0, yA − y0) = (xAT , yAT ) (45)

B = (xB − x0, yB − y0) = (xBT , yBT ) (46)

Note that it would be the next step in the process to create the line of symmetry
and test against it in order to decide which path needed to be taken. Since we
have preselected to illustrate a path underneath the boundary arc, the line of
symmetry and condition is as follows:

yS − (yA − y0) =
yA − y0
xA − x0

[xS − (xA − x0)]

⇒ yS − yAT =
yAT
xAT

(xS − xAT )

⇒ yS =
yAT
xAT

(xS − xAT ) + yAT (47)

Thus, in order for a path underneath to be the optimum path,

ySB =
yAT
xAT

(xB − xAT ) + yAT > yBT

Now, like before, the system should be rotated so that point A lies on the
horizontal axis.

ATR = (xATR, yATR) =

(
−
√
x2AT + y2AT , 0

)
(48)

yielding the same tangential point as proven in Theorem 1. However, due to
the needed negative y value for a path underneath the obstacle arc and the
symmetry of the system relative to point A about the x-axis, the tangential
point is as follows:

(xATRI , yATRI) =

−r2
RA

,−r

√
1−

(
r

RA

)2
 (49)

22



Notice that this is the tangential point to the obstacle arc when it is still
in its translated and rotated state. In other words, the system is centered at
the origin and endpoint A still lies on the x-axis. In order to find the actual
tangential point for the system in its original state, this given representation
must be rotated and translated by the same amount that endpoint A is rotated
and translated to return it to its original position in space.

First we rotate the system back in its translated position. This yields a
tangential point, (xATI , yATI), corresponding to endpoint A such that

(xATI , yATI) = (r cos θ, r sin θ) (50)

where the value of θ from Theorem 3 holds in this case as well.

θ = π + tan−1
(
yAT
xAT

)
+ tan−1

(
yATRI
xATRI

)
(51)

At last, the system can be translated back to its original position returning the
original equation for the boundary arc, values for endpoint A, and the value

(xAI , yAI) = (r cos θ − x0, r sin θ − y0) (52)

with θ defined in the same way it was in the translated state.
These complete the set of values necessary to create the optimum path from

endpoint A to the tangential point on the boundary arc for a path along the
bottom of the obstacle.

The calculations and configurations for the B section of the path are identical
to those for the A section excluding the value for θ in the representation of the
tangential point. The correct values are as follows:

(xBTRI , yBTRI) =

 r2

RB
,−r

√
1−

(
r

RB

)2
 (53)

is rotated so that
(xBTI , yBTI) = (r cos θ, r sin θ) (54)

defining θ so that

θ = tan−1
(
yBT
xBT

)
+ tan−1

(
yBTRI
xBTRI

)
(55)

and then finally translating the system back to its original position to finalize
the tangential point so that

(xBI , yBI) = (r cos θ, r sin θ) (56)

with θ retaining the value above for the B section of the path.
The complete Rubber Band Solution is identical to the one on display in

Theorem 4. The path direction does not effect the way that the solution is
defined, merely the values that fill the linear equations present in the solution.
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Appendix B

Here we will show a full example using a real-valued function in two-space
and two endpoints. The calculations and formulation of the Rubber Band So-
lution will be made for the A and B segments simultaneously.

f(x) =
−x2

2
(57)

A =

(
−2,
−3

2

)
, B =

(
4,
−1

2

)
(58)

Now we must create the obstacle circle as an approximation for f(x). Be-
ginning, we investigate the first derivate of f(x) on [−2, 4].

f ′(x) = −x (59)

then, we see that the critical point is as follows:

f ′(x) = −xc = 0

⇒ xc = 0 (60)

thus the relative extrema value of f(x) is indeed in our interval of concern and
the value is

(xc, yc) = (xc, f(xc)) = (0, f(0)) = (0, 0) (61)

Next we want to solve for the radius of curvature at this point in order to
construct the obstacle circle. Therefore,

Rf(xc) =
[1 + f ′(xc)

2]3/2

f ′′(xc)

⇒ Rf(0) =
[1 + f ′(0)2]3/2

f ′′(0)

⇒ Rf(0) =
13/2

−1

⇒ Rf(0) = −1 (62)

It follows that
(x0, y0) = (xc, f(xc) +Rf(xc)) = (0,−1) (63)

and

(x− x0)2 + (y − y0)2 = r2

⇒ (x− x0)2 + (y − y0)2 = R2
f(xc)

⇒ (x− 0)2 + (y + 1)2 = 12

⇒ x2 + (y + 1)2 = 1 (64)
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Now that we have a system representation with an obstacle circle and two
endpoints, we can implement the steps laid out in the general solution. There-
fore, we translate the entire system about the origin yielding

x2 + y2 = 1 (65)

AT = (xAT , yAT ) =

(
−2,−1

2

)
, BT = (xBT , yBT ) =

(
4,

1

2

)
(66)

Now it is most helpful to look at the line of symmetry condition for the
system in this translated state in order to find whether an over the top or
underneath path will yield the true optimized path around the obstacle circle.

Therefore, we have

y − y0 =
yAT − y0
xAT − x0

(x− x0)

⇒ y − 0 =
− 1

2 − 0

−2− 0
(x− 0)

⇒ y =
1

4
x (67)

Then testing the line of symmetry against point B,

y(xBT ) =
1

4
(4) = 1 >

1

2
(68)

Therefore, we see that a path underneath the obstacle circle is desired for opti-
mization.

Since the system is in a translated state, the system must be rotated so
that A and B lie on the x-axis. Note that although these calculations are
simultaneously, it is proper to think of the entire system rotating in a single
direction, not in opposite directions at the same time. Thus,

ATR =

(
−
√
x2AT + y2AT , 0

)
=

(
−
√

17

4
, 0

)
(69)

BTR =

(√
x2BT + y2BT , 0

)
=

(√
65

4
, 0

)
(70)

yielding

(xAITR, yAITR) =

−r2
RA

,−r

√
1−

(
r

RA

)2
 =

(
2√
17
,−
√

13

17

)
(71)

(xBITR, yBITR) =

 r2

RB
,−r

√
1−

(
r

RB

)2
 =

(
2√
65
,−
√

61

65

)
(72)

25



Now that we have the tangential points defined in the translated and rotated
state of the system, we define them using coordinates relative to the original
position of the system.

(xAI , yAI) = (r cos θ − x0, r sin θ − y0) (73)

Looking at each component,

xAI = cos

π + tan−1

−1

2
−2

+ tan−1

−
√

13

17

− 2√
17


− 0

= cos

[
π + tan−1

(
1

4

)
+ tan−1

(√
13

2

)]
= −0.258497

yAI = sin

π + tan−1

−1

2
−2

+ tan−1

−
√

13

17

− 2√
17


− 1

= sin

[
π + tan−1

(
1

4

)
+ tan−1

(√
13

2

)]
− 1

= −1.966012

Then similarly, we have

(xBI , yBI) = (r cosφ− x0, r sinφ− y0) (74)

Looking at each component,

xBI = cos

tan−1

 1

2
4

+ tan−1

−
√

61

65
2√
65


− 0

= cos

[
tan−1

(
1

8

)
+ tan−1

(
−
√

61

2

)]
= 0.366311
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yBI = sin

tan−1

 1

2
4

+ tan−1

−
√

61

65
2√
65


− 1

= sin

[
tan−1

(
1

8

)
+ tan−1

(
−
√

61

2

)]
− 1

= −1.930492

Now that we have every needed point value defined for the system about its
original position, we can define the Rubber Band Solution for this system as
follows:

R(x) =


y =

(−1.966012 + 1.5)

(−0.258497 + 2)
(x+ 2)− 1.5 if x ∈ [−2,−0.258497]

y = −
√

1− x2 − 1 if x ∈ [−0.258497, 0.366311]

y =
(−1.930492 + 0.5)

(0.366311− 4)
(x− 4)− 0.5 if x ∈ [0.366311, 4]

,

that is defined more clearly as:

R(x) =


y = −0.267597x− 2.035194 if x ∈ [−2,−0.258497]

y = −
√

1− x2 − 1 if x ∈ [−0.258497, 0.366311]
y = 0.393675x− 2.074699 if x ∈ [0.366311, 4]

,
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Appendix C

Below is a sample MATLAB m.file that can be used to complete the path
optimization process for a circle obstacle. Note that although the code has all
of the components of the generalized version, due to the defined calculation
of tan−1(x), working on some intervals in the real plane will not yield precise
solutions for the tangent points. It is best if this algorithm is used for circles
and endpoints relatively close to the origin.

function RubberBandSolution(xa,ya,xb,yb,x0,y0,r)

% RubberBandSolution creates the Rubber

% Band Solution for a given set of points and obstacle circle

% Inputs:

% (xa,ya) = x and y coordinates for the endpoint A

% (xb,yb) = x and y coordinates for the endpoint B

% (x0,y0) = x and y coordinates for the center of the obstacle circle

% r = radius of the obstacle circle

if nargin<5,error(’five arguments needed: (xa,ya,xb,yb,r)’),end;

if nargin<6, y0=0; x0=0;end

if sqrt(xa^2 + ya^2)<=r,error(’endpoint must be outside of the

obstacle function’),end

if sqrt(xb^2 + yb^2)<=r,error(’endpoint must be outside of the

obstacle function’),end

plot(xa,ya,’ok’,’markersize’,8)

hold on

plot(xb,yb,’ok’,’markersize’,8)

hold on

theta=0:pi/100:2*pi;

plot(r*cos(theta)+x0,r*sin(theta)+y0,’k’,’linewidth’,2)

hold on

xo=r*cos(theta); % x value of the obstacle circle centered at 0

yo=r*sin(theta); % y value of the obstacle circle centered at 0

xat=xa-x0; % translated/shifted values for the endpoints

yat=ya-y0;

xbt=xb-x0;

ybt=yb-y0;

xatr=-sqrt(yat^2+xat^2); % translated and rotated values for

the endpoints. they now lie on the x-axis

yatr=0;

xbtr=sqrt(ybt^2+xbt^2);
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ybtr=0;

RA=-xatr; % Radii for the above circles through each endpoint

RB=xbtr;

xA=RA*cos(theta); % x and y coordinates for the circles through

the endpoints centered at 0

yA=RA*sin(theta);

xB=RB*cos(theta);

yB=RB*sin(theta);

ys=(yat/xat)*(xbt-xat)+yat;

if ybt>=ys, %The path over the top half will be the desired route

xaitr=-r^2/RA;

yaitr=r*sqrt(1-(r/RA)^2);

xai=r*cos((180-atan(yaitr/xaitr)+atan((yat/xat))))+x0;

yai=r*sin((180-atan(yaitr/xaitr)+atan((yat/xat))))+y0;

xbitr=r^2/RB;

ybitr=r*sqrt(1-(r/RB)^2);

xbi=r*cos(atan(ybitr/xbitr)+atan((ybt/xbt)))+x0;

ybi=r*sin(atan(ybitr/xbitr)+atan((ybt/xbt)))+y0;

else

xaitr=-r^2/RA;

yaitr=-r*sqrt(1-(r/RA)^2;

xai = r*cos(180+atan(-r*sqrt(1-(r/RA)^2)/(-r^2/RA))

+atan((yat/xat)));

yai = r*sin(180+atan(-r*sqrt(1-(r/RA)^2)/(-r^2/RA))

+atan((yat/xat)));

xbitr=r^2/RB;

ybitr=-r*sqrt(1-(r/RB)^2);

xbi=r*cos(atan(ybitr/xbitr)-atan((ybt/xbt)))+x0;

ybi=r*sin(atan(ybitr/xbitr)-atan((ybt/xbt)))+y0;

end

x=xa:(xb-xa)/100:xb;

y1=((yai-ya)/(xai-xa))*(x-xa)+ya;

y2=((ybi-yb)/(xbi-xb))*(x-xb)+yb;

plot(x,y1,’b’,’linewidth’,2)

hold on

plot(x,y2,’m’,’linewidth’,2)

hold on

end
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